Physical Geology Across the American Landscape

John J. Renton

Third Edition

Edited by Susan Wilcox and Curtis J. Williams

National Park Sidebars written by Erica S. Gardiner

Kendall Hunt Book Team

Chairman and Chief Executive Officer Mark C. Falb President and Chief Operating Officer Chad M. Chandlee Vice President, Higher Education David L. Tart Director of Publishing Partnerships Paul B. Carty Editorial Manager Georgia Botsford Senior Editor Lynne Rogers Vice President, Operations Timothy J. Beitzel Assistant Vice President, Production Services Christine E. O'Brien Senior Production Editor Mary Melloy Senior Permissions Editors Colleen Zelinsky and Renae Horstman Senior Cover Designer Janell Edwards

Coast Learning Systems Book Team

Ding-Jo H. Currie, Chancellor, Coast Community College District Loretta P. Adrian, President, Coastline Community College Dan C. Jones, Executive Dean, Office of Instructional Systems Development Laurie R. Melby, Director of Production Lynn M. Dahnke, Director of Marketing & Publisher Partnerships Judy Garvey, Director, E-Media & Publishing Robert D. Nash, Director, Instructional Design & Faculty Support Sylvia Amito'elau, Instructional Designer Wendy Sacket, E-Media & Publishing Project Coordinator Marie Hulett, Production Coordinator Linda Wojciechowski, Senior E-Media & Publishing Assistant Thien Vu, E-Media & Publishing Assistant

Cover design by Don Vierstra; cover images © iStock, Inc., and Shutterstock, Inc. All Shutterstock images used under license from Shutterstock, Inc.

Kendall Hunt

www.kendalhunt.com Send all inquires to: 4050 Westmark Drive Dubuque, IA 52004-1840

Copyright © 2011 by Coast Community College District and Kendall Hunt Publishing Company

ISBN 978-0-7575-5598-5 Student Edition

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

BRIEF CONTENTS

INTRODUCTION

INTRODUCTION: Formation of Earth and Its Place in the Solar System	2
UNIT 1	
CHAPTER 1: Interior of the Earth	38
CHAPTER 2: Plate Tectonics	66
CHAPTER 3: Rock Deformation and Mountain Building	104
CHAPTER 4: Earthquakes and Seismology	148
UNIT 2	

CHAPTER 5: Minerals	186
CHAPTER 6: Igneous Rocks and Volcanism	224
CHAPTER 7: Weathering, Soils, and Sedimentary Rocks	286
CHAPTER 8: Metamorphism and Metamorphic Rocks	346

UNIT 3	
CHAPTER 9: The Age of Earth and Geologic Time	385
CHAPTER 10: Mass Wasting	428
CHAPTER 11: Streams and Groundwater	474
CHAPTER 12: Oceans and Coastlines	538
CHAPTER 13: Glaciers and Deserts—Climatic Features	594
CHAPTER 14: Economic Geology and Resources	658

CONTENTS

PREFACE	XVI
TEXTBOOK FEATURES	XVIII
ABOUT THE AUTHOR AND INSTRUCTIONAL DESIGNER	XX
ACKNOWLEDGMENTS	XXI

INTRODUCTION

Formation of Earth and Its Place in the Solar System	2		
INTRO.1 EARTH AND ITS SYSTEMS		4	
Intro.1.1 The Atmosphere		5	
Intro.1.2 The Hydrosphere		6	
Intro.1.3 The Cryosphere		7	
Intro.1.4 The Lithosphere		8	
Intro.1.5 The Biosphere		10	
INTRO.2 EARTH'S FORMATION		11	
Intro.2.1 From Solar Nebula to Solar System		11	
Intro.2.2 The Organization of the Solar System		13	
INTRO.3 THE TERRESTRIAL PLANETS		19	
Intro.3.1 Stages of Planetary Development		19	
Intro.3.2 Earth's Neighbors		23	
SUMMARY		29	
KEY TERMS		31	
ANSWERS TO CONCEPT CHECKS		32	
REVIEW EXERCISES		34	

EARTH'S INTERIOR AND TECTONIC PROCESSES

CHAPTER 1

Interior of the Earth

<u>38</u>

1.1	SEISMI	C WAVES	40
	1.1.1	Compression and Shear Waves	40
	1.1.2	Body Waves	41
	1.1.3	Surface Waves	42
1.2	THE SE	ISMOGRAPH	44
1.3	LOCATI	NG EARTHQUAKES	47
	1.3.1	Focus and Epicenter	47
	1.3.2	Arrival Times of the Seismic Waves at Seismic Stations	48
	1.3.3	Distance Calculations	48
1.4	THE DE	TERMINATION OF EARTH'S COMPOSITION USING SEISMIC WAVES	50
	1.4.1	Density, Seismic Waves, and Refraction	51
	1.4.2	Increased Density with Depth	52
1.5	SEISMI	C DISCONTINUITIES AND EARTH'S STRUCTURE	53
	1.5.1	Mohorovicic Discontinuity	53
	1.5.2	Gutenberg Discontinuity	54
	1.5.3	Evidence for a Solid Inner Core	55
	1.5.4	Lithosphere-Asthenosphere	55
1.6	ISOSTA	SY	57
	1.6.1	Gravitational Balance	57
	1.6.2	Isostatic Balance	57
SIIW	MVBA		ይበ
KEV			61
KEVI		1013E3	04

CHAPTER 2

Plate Tectonics

66

HISTORICAL DEVELOPMENT OF THE THEORY		68
2.1.1	Conceptual Models of Earth	68
2.1.2	Continental Drift	69
	HISTO 2.1.1 2.1.2	HISTORICAL DEVELOPMENT OF THE THEORY2.1.1 Conceptual Models of Earth2.1.2 Continental Drift

2.2	MODER	IN DEVELOPMENTS	73
	2.2.1	Marine Geology and Geophysics	74
	2.2.2	Magnetism and Paleomagnetism	76
	2.2.3	Seafloor Spreading	79
2.3	PLATE	TECTONICS THEORY	81
	2.3.1	Tectonic Plates	81
	2.3.2	Plate Boundaries	81
	2.3.3	Plate Movement	84
	See I	au Sidebar: Joshua Tree National Park	86
	See I	<i>t</i> Sidebar: Wrangell-St. Elias National Park and Preserve	92
	2.3.4	The Supercontinent Cycle	96
SUMI	MARY		55
KEY ⁻	TERMS		56
ANSWERS TO CONCEPT CHECKS			57
REVIEW EXERCISES			58

Rock Deformation and	
Mountain Building	

3.1	ROCK DEFORMATION 1		
	3.1.1	Stress	106
	3.1.2	Strain or Deformation	107
3.2	STRIKE	AND DIP AND GEOLOGIC STRUCTURES	111
	3.2.1	Strike and Dip	111
	3.2.2	Geologic Structures	112
3.3	DIRECT	ION OF ROCK MOVEMENT	120
	3.3.1	Apparent Motion of Faults	120
	See I	<i>t</i> Sidebar: Great Smoky Mountiains National Park	122
	3.3.2	Apparent Motion of Folds	126
3.4	MOUNT	AINS AND MOUNTAIN BUILDING	127
	3.4.1	Volcanic Mountains	127
	3.4.2	Fold Belt Mountains	130
	3.4.3	Domal and Fault-Block Mountains	132
	SE	TE IT SIDEBAR: GRAND TETONS NATIONAL PARK	134
3.5	TERRA	NES	136
	3.5.1	Accreted Terranes	137

SUMMARY	139
KEY TERMS	141
ANSWERS TO CONCEPT CHECKS	142
REVIEW EXERCISES	144

Earthquakes and Seismology

148

4.1	DISTRI	BUTION OF EARTHQUAKES	151
	4.1.1	How Earthquakes Occur	151
	4.1.2	Determining Earthquake Location	151
	4.1.3	Earthquake Depths	153
	4.1.4	Plate Boundary Earthquakes	154
	4.1.5	Intraplate Earthquakes	155
	See 1	$ ilde{ au}$ Sidebar: Denali National Park and Preserve	156
4.2	MEASU	IRING EARTHQUAKES	159
	4.2.1	Intensity	159
	4.2.2	Magnitude	159
4.3	EARTH	QUAKE DAMAGE	163
	4.3.1	Examples of Significant Earthquakes	164
	4.3.2	Factors Contributing to Earthquake Destruction	169
	4.3.3	Earthquake Damage Prevention	171
4.4	EARTH	QUAKE PREDICTION	175
	4.4.1	Worldwide Seismic Network	175
	4.4.2	Paleoseismology	175
	4.4.3	Long- and Short-Term Earthquake Prediction	177
SUN	IMARY		178
KEY TERMS			179
ANS	WERS T	D CONCEPT CHECKS	180
REVIEW EXERCISES 1			181

UNIT 2

CHAPTER 5

Minerals

186

EARTH'S MINERALS AND ROCKS

5.1	MINER	ALS AND ROCKS DEFINED	188
	5.1.1	Elements and Compounds	189
	5.1.2	Chemical Bonding	193
5.2	EARTH	'S CRUST	196
	5.2.1	Composition of Earth's Crust	196
	5.2.2	The Silicate Minerals	196
	5.2.3	Nonsilicate Minerals	201
	See 1	T SIDEBAR: WHITE SANDS NATIONAL MONUMENT	202
5.3	MINER	AL IDENTIFICATION	208
	5.3.1	Physical Properties Used in Mineral Identification	208
	See 1	T Sidebar: Petrified Forest National Park	210
	5.3.2	Hand Mineral Identification	216
	5.3.3	Instrumental Identification	217
SUM	MARY		219
KEY TERMS			220
ANSWERS TO CONCEPT CHECKS			221
REVI	EW EXE	RCISES	222

Igneous Rocks and Volcanism

6.1	IGNEO	IGNEOUS ROCKS	
	6.1.1	The Melting and Crystallization of Solids	227
	6.1.2	Melting Mechanisms	227
	6.1.3	Partial Melting of Rock	229
	6.1.4	Crystallization of Rock	231
6.2	CLASS	IFICATION OF IGNEOUS ROCKS	233
	6.2.1	Texture	233
	6.2.2	Composition	235
6.3	MAGM	A FORMATION AND ASCENT	238
	6.3.1	Types of Magma	238
	6.3.2	Magma Formation	240
	6.3.3	Magma Ascent	241
6.4	IGNEO	US ROCK BODIES	242
	6.4.1	Classifying Plutons	242
	6.4.2	Tabular Plutons	243
	6.4.3	Massive Plutons	244

6.5	j VOLCANOES		249
	6.5.1	Anatomy of a Volcano	249
	6.5.2	Shield Volcanoes	250
See It Sidebar: Hawaii Volcanoes National Park			
	6.5.3	Fissure Eruptions	258
	6.5.4	Composite Volcanoes	259
	6.5.5	Other Volcanic Features	264
	See I	r Sidebar: Lassen Volcanic National Park	266
6.6	PREDIC	CTING VOLCANIC ACTIVITY	272
	6.6.1	Monitoring Systems	273
	6.6.2	Past and Future Predictions	274
SUM	MARY		276
KEY TERMS			278
ANSWERS TO CONCEPT CHECKS			279
REVIEW EXERCISES			282

Weathering, Soils, and
Sedimentary Rocks

7.1	WEATH	IERING AND ITS CONTROLS	288
	7.1.1	Mechanical Weathering	288
	7.1.2	Chemical Weathering	292
	7.1.3	Rates of Weathering	294
	See I	t Sidebar: Zion National Park	298
	7.1.4	Products of Weathering	300
7.2	SOILS		302
	7.2.1	Soil Horizons	302
	7.2.2	Soil Formation	304
	7.2.3	Types of Soils	307
7.3	SEDIM	ENTARY ROCKS	310
	7.3.1	Importance of Sedimentary Rocks	310
	7.3.2	Formation of Clastic Sedimentary Rocks	311
	7.3.3	Classification of Clastic Sedimentary Rocks	313
	7.3.4	Chemical Sedimentary Rocks	316
	7.3.5	Biochemical Sedimentary Rocks	320
	7.3.6	Depositional Environments	322
	7.3.7	Sedimentary Features	323
	See I	au Sidebar: Grand Canyon National Park	324
	7.3.8	Interpreting Sedimentary Rocks	329

7.4	ENVIRO	INMENTAL CONCERNS	331
	7.4.1	Environmental Concerns Related to Weathering	331
	7.4.2	Environmental Concerns Related to Soils	331
	7.4.3	Environmental Concerns Related to Sedimentary Rocks	335
SUMMARY KEY TERMS			336 338
ANSWERS TO CONCEPT CHECKS			339
REVIEW EXERCISES			342

Metamorphism and	
Metamorphic Rocks	

8.1	METAN	348	
	8.1.1	Metamorphic Conditions	349
	8.1.2	Metamorphic Grades	351
	8.1.3	Metamorphic Processes	352
8.2	METAN	IORPHIC TYPES AND SETTINGS	356
	8.2.1	Regional Metamorphism	356
	See I	au Sidebar: Isle Royale National Park	358
	8.2.2	Contact Metamorphism	360
	8.2.3	Hydrothermal Metamorphism	361
	8.2.4	Dynamic Metamorphism	362
8.3	METAN	IORPHIC ROCK CLASSIFICATION	363
	8.3.1	Foliated Metamorphic Rocks	363
	8.3.2	Nonfoliated Metamorphic Rocks	366
	See I	au Sidebar: Acadia National Park	368
	8.3.3	Metamorphic Rock Identification	372
	8.3.4	Metamorphic Facies	373
8.4	ENVIRO	DNMENTAL CONCERNS	375
SUMMARY KEY TERMS ANSWERS TO CONCEPT CHECKS REVIEW EXERCISES			378 379 380 382

TIME, SURFACE FEATURES, AND RESOURCES

UNIT 3

CHAPTER 9

The Age of Earth and Geologic Time

386

9.1	RELATI	VE DATING	388
	9.1.1	Relative Dating Principles	389
	9.2.2	Gaps in the Geologic Record	397
9.2	ABSOLI	UTE DATING	401
	9.2.1	Absolute Dating Based on Cyclical Processes	401
	9.2.2	Isotopes and Radioactive Decay	403
	9.2.3	Radiometric Dating	406
	9.2.4	Limitations of Radiometric Dating	407
	See It	SIDEBAR: CANYONLANDS NATIONAL PARK	410
9.3	THE GE	OLOGIC TIME SCALE	412
	9.3.1	Geologic Time	412
	9.3.2	Divisions and Subdivisions of the Geologic Time Scale	414
	9.3.3	The Geologic Record	415
SUM	MARY		421
KEY TERMS			422
ANSWERS TO CONCEPT CHECKS			423
REVI	REVIEW EXERCISES		

CHAPTER 10

Mass Wasting

10.1	THE NA	TURE OF MASS WASTING	430
	10.1.1	The Driving Force: Gravity	430
	10.1.2	Resisting Factors	431
	10.1.3	Slope Stability	432
	10.1.4	Triggers	433
	See It	Sidebar: Cuyahoga Valley National Park	440
10.2	TYPES	DF MASS WASTING	444
	10.2.1	Falls	444

	10.2.2	Landslides	447
	10.2.3	Flows	449
10.3	ENVIROI	NMENTAL CONCERNS	455
	10.3.1	Regional Hazards	455
,	See It	SIDEBAR: CAPITOL REEF NATIONAL PARK	456
	10.3.2	Local Indications of Slope Instability	460
	10.3.3	Methods of Slope Stabilization	462
SUMMARY			468
KEY TERMS			469
ANSWERS TO CONCEPT CHECKS			470
REVIEW EXERCISES			471

Streams and Groundwater

11.2	STREAM	IS	478
	11.2.1	River Systems	479
	11.2.2	The Energy of Stream Flow	482
	11.2.3	Dynamics of Water Flow	485
	11.2.4	Sculpting the Landscape: Erosion	486
	11.2.5	Sculpting the Landscape: Transportation	488
	11.2.6	Sculpting the Landscape: Deposition	490
	11.2.7	The Ages of a River	490
	11.2.8	Floods	496
	See It	SIDEBAR: MISSISSIPPI NATIONAL RIVER AND	408
11 2	CDUINI		498 502
11.0	GRUUINI	JWAIER	JUZ
	11.3.1	Definition of Groundwater	502
	11.3.2	Porosity and Permeability	503
	11.3.3	Aquifers and Aquitards	504
	11.3.4	The Water Table	505
	11.3.6	Water Wells	508
	11.3.5	Aquifer Systems	509
	11.3.6	Geologic Effects of Groundwater	512
11.4	KARST	TOPOGRAPHY	514
	11.4.1	Characteristics of Karst Topography	514
	11.4.2	Cave Development and Construction	515
	11.4.3	Collapse Sinkholes	517
	See It	SIDEBAR: CARLSBAD CAVERNS NATIONAL PARK	518

11.5	ENVIRONMENTAL CONCERNS		
	11.5.1	Stream Pollution	523
	11.5.2	Groundwater Pollution	524
	11.5.3	Saltwater Intrusion	525
	11.5.4	Overproduction	526
SUMMARY			527
KEY TERMS			530
ANSWERS TO CONCEPT CHECKS			531
REVIEW EXERCISES			535

l		
l		

Осе	eans and Coastlines	538		Andrew Contact of
10.1			F40	
12.1	URIGIN UF THE UCEAN DASINS		04U	
	12.1.1 A Cosmic Hypothesis		540	
	12.1.2 Plate lectonics		540	
12.2	LANDFORMS OF THE OCEAN BASINS		541	
	12.2.1 Oceanic Ridges		541	
	12.2.2 Abyssal Hills		544	
	12.2.3 Abyssal Plains		545	
	12.2.4 Seamounts		545	
	12.2.5 Deep-Sea Trenches		547	
12.3	CONTINENTAL MARGINS		548	
	12.3.1 The Continental Shelf		548	
	12.3.2 The Continental Slope		549	
	12.3.3 The Continental Rise		550	
12.4	MOVEMENT OF OCEAN WATER		552	
	12.4.1 Waves		552	
	12.4.2 Currents		558	
12.5	COASTAL CURRENTS		566	
	12.5.1 Emergent or High-Energy Coastlines		566	
	SEE IT SIDEBAR: CHANNEL ISLANDS NATION	NAL PARK	568	
	12.5.2 Submergent or Low-Energy Coastlines	5	572	
12.6	REEFS		577	
	12.6.1 Reef Building		577	
	12.6.2 Kinds of Reefs		577	
	See It Sidebar: Virgin Islands National	l Park	578	

583

12.7 MODIFICATION OF COASTAL PROCESSES

12.8 ENVIRONMENTAL PROBLEMS	585
SUMMARY	586
KEY TERMS	588
ANSWERS TO CONCEPT CHECKS	589
REVIEW EXERCISES	592

Glaciers and Deserts— Climatic Features

13.1 GLACIAL FORMATION, STRUCTURE, AND MOVEMENT			596
	13.1.1	Formation of Glaciers	597
	13.1.2	Glacial Ice Formation	599
	13.1.3	Movement of Glacial Ice	600
	13.1.4	The Glacial Budget	601
13.2	GLACIA	L FEATURES	603
	13.2.1	Erosional Processes and Features	603
	See In	r Sidebar: Glacier Bay National Park and Preserve	608
	13.2.2	Depositional Processes and Features	615
13.3	CAUSES	S OF CONTINENTAL GLACIATION	623
	13.3.1	Milankovitch Hypothesis	623
	13.3.2	Volcanic Activity	624
	13.3.3	Changes in the Concentration of Carbon Dioxide	624
13.4	GLACIA	L ENVIRONMENTAL CONCERNS	625
	13.4.1	Climate	625
	13.4.2	Medical Concerns	627
13.5	DESER	ſS	627
	13.5.1	Deserts and Relative Humidity	628
	13.5.2	Types of Deserts	629
13.6	DESER	I FEATURES	634
	13.6.1	Weathering and Mass Wasting	634
	13.6.2	Water Erosion and Deposition	634
	See In	r Sidebar: Death Valley National Park	638
	13.6.3	Wind Erosion and Deposition	640
13.7	DESER	FENVIRONMENTAL CONCERNS	645
SUMMARY			648
KEY TERMS E			650
ANSWERS TO CONCEPT CHECKS			
REVIEW EXERCISES			655

Economic Geology and Resources

14.1	NATURA	AL RESOURCES	660
	14.1.1	Historical Use of Resources	660
	14.1.2	Renewable and Nonrenewable Resources	662
	14.1.3	Resources versus Reserves	664
14.2	ENERG	Y RESOURCES	665
	14.2.1	Fossil Fuels	665
	14.2.2	Nuclear Power	672
14.3	MINERA	AL RESOURCES	675
	14.3.1	Metallic Resources	675
	14.3.2	Nonmetallic Resources	678
14.4	WATER	RESOURCES	680
	14.4.1	Surface and Groundwater Supplies	681
	14.4.2	The Pressure on Water Supplies	682
14.5	THE FU	TURE OF GEOLOGIC RESOURCES	685
	14.5.1	Population and Resources	685
	14.5.2	Environmental Issues	686
	14.5.3	Alternative Energy Resources	689
	See In	r Sidebar: Yellowstone National Park	696
SUMI	MARY		703
KEY ⁻	TERMS		705
ANSWERS TO CONCEPT CHECKS			706
REVIEW EXERCISES			710
APPE	INDIX		713
GLOS	SARY		716
INDE	Х		739

It seems almost every child goes through a rock phase, a time when every outing results in bags and pockets stuffed with rocks that must be brought home to be studied or merely possessed. Rocks seem to bring out an innate curiosity in all of us about the world in which we live, how it formed, and how it works.

Some people never leave that rock phase; those people become geologists. Others may leave the rocks behind as they pursue new interests, but that childhood curiosity, we are convinced, continues to operate within us. *Physical Geology Across the American Landscape* is a textbook designed not only to impart scientific data about the landforms of the North American continent but also to take students on an exploration that stimulates and satisfies the desire to know more about their home planet.

During that exploration, students will discover that geology is more than identifying the rocks that found their way into childhood pockets. It is the study of features and processes that are often either too distant or too ordinary to occupy daily attention, but that have a dramatic impact on their daily lives. While reading this textbook, the student will discover that the local backdrops so taken for granted—the rolling hills, streams and rivers, shorelines, and mountains—are more than just scenery. Every geological feature has a story to tell.

Some of the stories are short and dramatic, such as a single earthquake, volcanic eruption, or landslide. Others unfold over millions of years and involve incomprehensibly large forces. Still others are unfolding as the result of our own actions. *Physical Geology Across the American Landscape* ties together all of this information to create a comprehensive understanding of Earth's features, events, and processes. In reaching this understanding, students not only will be able to identify some of those pocket rocks but also will be prepared to make new assessments of the state of our planet, to make smart decisions, and to find solutions to some of humanity's most pressing issues. At the same time, they'll discover what every geologist already knows: not only is the study of Earth useful, it's also captivating—not to mention, a lot of fun.

Textbook Objectives

Physical Geology Across the American Landscape was designed to be used as a guide and core source of content for a college introductory geology lecture course or as an integral part of *Physical Geology Across the American Landscape Online Course*. This textbook was written to accomplish three overall objectives with the general purpose of creating a greater understanding of the planet on which we live, with a focus on the North American continent. After reading this textbook and completing the activities assigned by their instructor, students will be able to:

• Explain common geological features and processes, using the major concepts and theories of geology.

Why do earthquakes happen in California and rarely in Florida? Why are there volcanoes in Alaska but not in Texas? Why are some states flat and others hilly or mountainous? Why do we care about glaciers that existed 10,000 years ago? Why are there so many landslides after a big rain? How do geologists know where to look for oil or gold? Why are some rocks colorful, some banded, and some a boring gray? How do scientists know how old a fossil is? Throughout this textbook, students will learn the answers to all of these questions and more. They'll not only be able to identify key geological features, but will also be able to explain the processes that formed them.

• Effectively write and verbally communicate, using solid research, observations, reasoning, and the scientific method, to support opinions and ideas.

Students will not only learn about features and processes, they will take a look at how geologists have gathered and analyzed information to discover how Earth works. In doing so, students will gain a new appreciation of the ways in which geologists have objectively observed the environment, noted and mapped details, obtained data, and then used logic and inference to draw the conclusions that are the foundation for our understanding of our planet.

• Critically analyze and evaluate information to make informed decisions about environmental issues and/or current events using the principles and methods of geology.

Earth may be at its most critical period in human history. Climate change, dwindling resources, and toxins in our environment present simultaneous challenges to the generations alive today. The choices that must be made over the next few years and decades require a thorough understanding of the factors and processes involved. Each chapter in this book contains a section on environmental concerns that brings these issues into focus. After reading this textbook, students not only will comprehend individual issues but also should have a grasp of the big picture that will allow them to make informed decisions.

Unifying Theme

Earth is a dynamic planet with processes that produce constant change, some of it fast and some of it slow. These changes have formed the landscapes around us, which will continue to be altered over time. This is the underlying theme and message of *Physical Geology Across the American Landscape*. Once students complete reading this book, nothing in the American landscape will look quite the same to them.

Textbook Organization

Physical Geology Across the American Landscape contains 14 chapters plus an introductory chapter. The chapters are presented in distinct units within the textbook, allowing instructors to customize the course to suit their individual teaching preferences.

The Introduction chapter places Earth within context. It first describes the various Earth systems—atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere—and how these systems interact to produce both short-term and long-term changes familiar to the student. The chapter then goes on to reveal how Earth formed and how Earth compares to other planets in our Solar System.

Unit 1: Earth's Interior and Tectonic Processes

Chapters 1 through 4 discuss how seismologists use data, logic, and inference to determine the composition of Earth's interior and figure out the workings of plate tectonics. Chapter 1 reveals how the refraction of seismic waves provided evidence for what lies beneath Earth's surface. Chapter 2 tells the story of how the theory of plate tectonics slowly evolved through the gradual accumulation of evidence. Chapter 3 focuses on two of the consequences of plate tectonics, rock deformation and mountain-building. Chapter 4 completes the sequence with an in-depth look at earthquakes.

Unit 2: Earth's Minerals and Rocks

Chapters 5 through 8 zoom in on the actual substances that compose Earth. Chapter 5 provides a brief introduction to minerals, their chemistry, their properties, and their identification. Chapter 6 focuses on igneous rocks, how they form, and how they are identified, and then goes on to discuss volcanoes and volcanic activity. Chapter 7 explores weathering, soils, and sedimentary rocks. Chapter 8 discusses metamorphic rocks and explains and describes what happens when rocks are exposed to extreme conditions.

Unit 3: Time, Surface Features, and Resources

Chapter 9 on Geologic Time is a stand-alone chapter that explains relative and absolute dating in the context of geologic time and its divisions. Chapters 10 through 13 focus on the processes that form and alter the American landscape. Chapter 10 is a discussion of mass wasting processes. Chapter 11 discusses streams and rivers, the groundwater system, and karst topography. Chapter 12 takes the student offshore to explore the ocean floor, winds, waves, and currents, as well as shoreline erosional and depositional processes. Chapter 13 focuses on climatic features, first visiting the cryosphere with a discussion of glaciers and glacial features, and then moving to the desert environment. Chapter 14 on Geological Resources is another stand-alone chapter. It discusses the identification, classification and extraction of energy, mineral and water resources in the context of an exponential growth in population.

LEARNING OBJECTIVES

AT A GLANCE

1.1.1 Compres 1.1.2 Body We 1.1.3 Surface 1

Textbook Features

Each chapter begins with clearly defined learning objectives so that students are aware of what they are expected to learn over the succeeding pages. The objectives are phrased in terms of not just what students will understand, but what they will be able to do to demonstrate their understanding.

Key terms are highlighted, with formal definitions appearing in the margins for easy reference.

High-quality photographs illustrate these concepts across the American landscape, supplemented with location maps placing each photograph within a geographic context.

Vibrant illustrations bring to life key concepts in ways that help students visualize how geological processes work.

At the end of each chapter section, concept checks test

student comprehension, helping to ensure they have mastered key concepts before moving on to build upon them in the next section.

NATIONAL PARKS

GRAND TETONS

See It Sidebar:

CHAPTER 3: ROCK DE

Grand Teton National Park

Strain or deformation is the geologic response to stress and is defined as any change in either size and or shape. Most recks are subjected to some type of deformation that takes the form of one or more of the three basic geologic structures: folds, fulls, or joints. Reguedless of type, all geologic structures are the result of stress and strain. Mountain building results in a mountain range, which is a single mass of mountain ranges, concely related in age and origin. When mountain ranges, concely related in age and origin. When mountain ranges concels, interconnected formations. The formations are combete, interconnected

ATION AND

and several hundred miles wide. Grand Teton National Park in Wyoming is one of the best places to see rock deformation and mountain building. If includes the major portions of two great landforms: (1) the Teton Range, an elongate, up-faulted block titled to the west and about 45 miles long; and (2) Jackson Hole, a narrow, down-dropped fault block, about the same length and 6 to 12 miles wide. The valley's remarkably flat floor

Grand Teton Jenny Lake. Stutiestock #49143259 Credit St Nick

seven of the Teon peoks exceed 12,000 feet in elevation; Grand Teoris 13,707 feet high. The ultimate cause of the faulting in the Teon area is related to the geologic history of the surrounding region. During the Lammide enogeny, which began at the end of the Cretaceous time, whole regions of western North America were folded, upitifed, and subjected to reverse faulting and thrusk funding an a grand basins. In structural terms, the Teon Fault is a steeph dipping neural fault. By delinito, the hanging wall of a normal fault has moved down in reliation to the footwall. The Teon Fault dips to the east. Therefore, the hanging wall side, the factsors thole block, moved downward in the relatively terming and sanches attem front of the Teon Fault side is the east function. The Teon Fault dips the disc, moved downward in the relatively terming and sanches attem front of the Teon Range is suggestive of faulting. Not many goologic processes other than fluing products and fault has been ended and ub carryons. It does not present the original fault scars, but does suggest the approximate slope and location of the scarp. s the structurally controlled mountain framework rose, noisture-bearing clued were forced to release rain in relet to surmount the heights of the Grand Tetors. Faretare precipitation at the high elevations for show-field and increased the volume and velocity of streams. Jumning water and glueial ice, with the help of weatherog and mass wasting processes, set alout sharpening eaks, exeavating canyons, and sculpturing the rangemaking Grand Tetor National Park as accellent Set Et

CHAPTER 3: ROCK DEFORMATION AND MOUNTAIN BUILDING 141

A highlight of *Physical Geology Across the American Landscape* is the collection of *See It* Sidebars that describe the most dramatic and pristine landscapes on our continent, our National Parks. Chapters feature various National Parks as examples illustrating the chapter material. The sidebars explore the geology of each park with regard to the chapter topic, accompanied by superb photographs from North America's most impressive scenery.

Finally, at the end of each chapter, a succinct summary capsulizes the material presented in the chapter, followed by a list of review questions to test student understanding of the material and flag any areas in which further study might be needed.

SUMMARY

When rocks are under sufficient stress, they deform. There are three types of stress: tension (stretching), compression (pushing), and shear (rotational or tearing). The response of rocks tress is called strains. Strain varies depending on whether the rok is elastic, brittle or ducile (plastic). Elastic nocks temporarily deform and resume their shape when the stress is remove at nock's calles in this exceeded, is type of strain depends workshear (tr is brittle or ducitie). Brittle rocks hereas in support or stress, plastic nocks become thinner and longer under tensional stress and fold under compression.

The deformation of recks under stress creates geologic structures. Geologitss describe the orientation of geologies structures in term of strike and dip. Strik describes the viorination of structures' saxis, and is the compass direction, relative to magnetic north, of an intersection between a horizontal plane and the surface of the structure. To glacechise the magnet between the horizontal plane and the surface of the structure. To glacechise the magnet between the horizontal plane and the surface of the internet.

isologie structures formed by rocks under stress are folds, faults, and joints. Folds are isologie structures formed by rocks under stress are folds, faults, and joints. Folds are suggest downward, Anticlines and synchrons often arguer to regether. A monosfline has a single that the structure of the structure of the structure of the structure of the structure in the structure of the structure of the structure of the structure of the structure lips on either side of the axis; asymmetric folds have limbs of different lengths with different lips values.

Anticiliens are further described by the inclination of the axis of the fold and the resulting contantion of the limits. A symmetrical fold has a near vertical access and limbs of capaal length and dip values; an asymmetrical fold has a satisfield has a server simile ads with limbs that dip in the same direction; and a recumbert fold has an axis and limbs that is almost hisroitant. Furging infolds have an axis that little towards one for sends, pestrating into the ground. Plauging infolds near an axis that little towards one for its ends, pestrating into the ground. Plauging infolds near an axis that little towards one for its ends, pestrating into the ground. Plauging infolds near an axis that little towards one for its ends, pestrating into the ground. Plauging infolds near an axis that little towards one for its ends, pestrating into the ground. Plauging infolds near an axis that little towards one for the axis intersects with the ground.

aufts are finatures: that occur when britile rocks are stressed and where there has been hope-constructions and the functure. Tensing or produces a normal fault in which the hanging wall noves down celtaive to the footwall. Compression produces reverse faults in which the anging wall moves up relative to the footwall. A special type of reverse fault is known as thrust fault which has a dip angle less than 30°, but the motion is still adopt the dip, so all up to the strength of the strength str

oints are fractures without any displacement, and often occur in sets as the result of stress. Most rock beds have joints. In addition, the shrinking of igneous rock as it cools can cause olumnar jointing, and the expansion of igneous rock after overlying pressure is released ca reate exciolation joints.

Trade excutation youns. The apparent motion of rocks that have faulted can be determined by the presence of lickensides or drag folds. The apparent motion of rocks that have folded is determined by the lirection in which asymmetric folds incline.

About the Author

John J. Renton, Ph.D., holds the Eberly Family Chair for Distinguished Teaching at West Virginia University, where he has been teaching for more than 40 years. He received his bachelor's degree in Chemistry from Waynesburg College and went on to earn his master's and Ph.D. in Geology from West Virginia University.

Renton is the author of the textbook, *Planet Earth*, second edition, which is the preceding edition of this textbook. He has also authored and coauthored nearly 50 geological academic papers and has worked on more than four million dollars of coal-related research grants.

Professor Renton is the recipient of several awards for his success in teaching, including the Outstanding Educator Award from the Eastern Section of the American Association of Petroleum Geologists, the Outstanding Teacher Award from the Eberly College of Arts and Sciences, the university-wide Outstanding Teacher Award and most recently, Professor of the Year Award from the West Virginia University Foundation.

About the Instructional Designer

Sylvia E. Amito'elau. M.S., served as the instructional designer of this textbook, as well as its accompanying laboratory manual, online laboratory, and online course, from concept to completion. She is an instructional designer for **Coast Learning Systems**, a division of Coastline Community College in Fountain Valley, California. Sylvia has assisted in design and development on several educational projects, including online courses in accounting, Arabic, chemistry, Chinese, education, math, and student success for more than 8 years. At Coastline Community College, Sylvia is responsible for providing instructional design, training, and support for all faculty, particularly in areas related to distance learning. As a member of the Senate Academic Standards Committee, she participated in the development of the Coastline Academic Quality Rubric. She is also a part-time faculty member teaching computer application courses and has experience teaching courses in various delivery modalities such as classroom, hybrid, and online. In addition, Sylvia has worked on the California Virtual Campus project, training and assisting Southern California community college faculty in the design, development, and delivery of online instruction. Sylvia holds a Master of Science degree in Instructional Technology and a Bachelor of Arts degree in Mathematics.

Acknowledgments

Many thanks and appreciation are expressed for the contributions of the following key individuals, who, without their input and dedication, this book would have not been possible.

Editors and Lead Advisors

Robert Altamura, Ph.D., Florida Community College at Jacksonville Open Campus, Urban Resources Center

James McClinton, M.S., Eastern New Mexico University-Roswell

Joseph Mraz, M.S., Santa Fe Community College

Kelly Ruppert, M.S., California State University, Fullerton, and Coastline Community College

Susan Wilcox, M.A., Writer and Media Producer Curtis Williams, M.S., California State University, Fullerton

Jan (Jay) Yett, M.S., Orange Coast College

Members of the National Academic Advisory Team

The following scholars, teachers, and practitioners helped focus the approach and content of each chapter to ensure accuracy, academic validity, significance, and instructional integrity.

Robert Altamura, Ph.D., Florida Community College at Jacksonville Open Campus, Urban Resources Center

Edward (Erik) Bender, M.S., Orange Coast College

Theodore Erski, M.A., McHenry County College

Roberto Falero, M.S., DPRA, Inc.

Gail Gibson, Ph.D., Florida Community College at Jacksonville-Kent Campus

Jonathan Kuespert, M.S., M.B.A., BreitBurn Energy Management Company

Michael Leach, M.S., M.A., New Mexico State University

James McClinton, M.S., Eastern New Mexico University-Roswell

Joseph Mraz, M.S., Santa Fe Community College

Jay P. Muza, Ph.D., Broward College

Douglas Neves, Ph.D., Cypress College

Kathy Ann Randall, M.S., Lincoln County Campus of the Flathead Valley Community College

Kelly Ruppert, M.S., California State University, Fullerton, and Coastline Community College

Richard Schultz, Ph.D., C.P.G., Elmhurst College

Debbie Secord, M.S., Coastline Community College

William H. Walker, Ph.D., Thomas Edison State College

Curtis Williams, M.S., California State University, Fullerton

Jan (Jay) Yett, M.S., Orange Coast College

Special thanks go to our editors, Susan Wilcox and Curtis Williams, who spent countless hours editing the magnificent content of the chapters in this outstanding book, taking great pains to make sure concepts are explained thoroughly, yet clearly.

John Renton also deserves a huge amount of recognition and gratitude for the creation of and original work on *Planet Earth*, without which we would not have this book about this extremely interesting discipline called geology. Also, we are very grateful for the many illustrations that John created that appear throughout the book.

Many thanks go to Sylvia Amito'elau of Coast Learning Systems for instructional design and quality assurance.

Special thanks are extended to our editors and lead academic advisors for their diligent contribution, review, and scrutiny of content over each chapter, and for reviewing and creating the Review Exercises. Additional thanks are extended to Erica Gardiner, who wrote the *See It* Sidebars featured throughout the textbook on selected National Parks in the United States and Canada.

This textbook would not be as rich and beautiful without the many gorgeous photographs and vibrant illustrations that are great examples to help students visualize key concepts and how geological processes work. We thank John Renton for his many illustrations, as well as Don Vierstra, who produced most of the other artwork and illustrations in this book.

We especially thank the many individuals who so graciously supplied us with and allowed us to use many interesting photographs in this textbook.

Very special thanks goes to the dedicated members of the Coast Learning Systems eMedia & Publishing team headed by Judy Garvey, who worked on the coordination, design, and production of this textbook: Wendy Sacket, Thien Vu, Don Vierstra, and Linda Wojciechowski.

Many thanks go to Marie Hulett of Coast Learning Systems and Colleen Zelinsky of Kendall Hunt, who spent tireless hours researching and acquiring images and permissions for hundreds of photographs and images that appear in this textbook.

We also thank all staff members of Kendall Hunt Publishing, Higher Education Division, for their hard work and dedication and help in making this textbook happen, especially David Tart, Paul Carty, Lynne Rogers, Mary Melloy, Colleen Zelinsky, Renae Horstman, Angela Willenbring, and Georgia Botsford.

Last, but certainly not least, we wish to thank members of the Coast Community College District and Coast Learning Systems, especially our Board of Trustees, Chancellor, President, and our Executive Dean of Instructional Systems Development, for their support.